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The problem of the theory of elasticity for a plate with prescribed 
stresses at the boundary will be treated. A study will be made of the 
behavior of the state of stress when the thickness of the plate is de- 
creased. 

Methods of constructing asymptotic processes for this problem were 
proposed earlier by A.L. Gal’ denveizer in the lecture to the First 
National Congress on Theoretical and Applied Mechanics (1 Vsesoiuznyi 

Wezd po Teoreticheskoi i Prikladnoi Mekhanike) in 1960, and also in 
the works of Friedrichs and Dressler Cd, Green [21, Reiss [31 and 

Gal’ denveizer [41 . 

The method presented here leads to the construction of asymptotic 

expressions for the step-by-step solution of a series of biharmonic 

problems, which are equivalent to the problem of the technical bending 

theory of plates, and to the inversion of a certain infinite matrix. 

This matrix does not depend on the geometry of the plate, and its in- 

version need only be carried out once for all plates and loadings. 

1. We will consider a plate of isotropic, homogeneous material of 

thickness 2h (Fig. 1). ?he boundary of the 

plate consists of two planes rl and the 

cylindrical surface r2. We will assume that 
r 

the boundary rl is free of loading, and 

that the loading applied to r2 is self- 

equilibrating. lhe assumption that rl is 

free has been introduced for simplicity. 

These stresses can always be removed by 

means of the solution of the corresponding 

problem for an infinite 1 ayer (see, for Fig. 1. 
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example, kl 1. Moreover, for these solutions it is possible to construct 

asymptotic expansions for small values of h. The behavior of the state 

of stress caused by tractions on t2 proves to be more complicated. ‘L’his 

question forms the essential contents of the present article. 

Here, the authors consider only the algorithm for the construction 

of the asymptotic representations, leaving aside the question of the 

exploitation of the said algorithm and its motivation. ‘Ihe whole treat- 

ment here has been carried out for the case of the flexure of a plate, 

although it is clear that the following presentation of the method is 

also applicable to the general case of the deformation of a plate. 

Ye will start with the relations given by Lur’e [61. It has been 

proved there that in the absence of loading on rl the state of stress 

in the plate during bending can be formed from three states of stress 

which henceforth will be called bihaxmonic, rotational and potential. 

The sense of these terms will become clear below. 

‘Ihe biharmonic state of stress is given by the following formulas: 

u(l) = ha[(v + 1) 6 $- - (v + $) f hq] 

v(‘)=hn (,+1)~+(v+;)~ns~] 
I 

W(1) = - (v + 1) ag - (v - 1) f ah2Aq + 2vahsAq 

rlCJA$ 
t,,(l) = 2@2 (1 - 5”) ag- , q*(r) = 2PVh2 (1 - 5”) +$ ) a,(‘) 

a,(‘) = 2P.h {[“v s + (v - 1) G] 5 - (v + f) -5J- As%} 

a,(l) = 2p.h 
I[ 

?v.6$+(v- q~];-(v+~)~na~~} 

TX,(‘) = 2$ (v + 1)5$+ - (v+@#$$} 
1 

(5 = z/h, 4 = x/a, q = y/a, I = h / a) 

where a is a characteristic dimension of the plate in the x, y-plane; 

y is a certain biharmonic function of the variables <, q; p is the 

shear modulus; a is Poisson’s ratio; and A is the Laplace operator. 

The rotational state of stress is given by the relations 

k=O 
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(I.41 

where f$({, q) are found from the equations 

2k+ 1 
ok= -,t 

2 
(k=O, 1,2,. . .) (1.5) 

‘Ihe potential state of stress is given by the formulas 

U(3) =ha ; np ($$, v(3) = ha ; rzp (C)f$, 

p=1 p=1 

da) = ---a jj QP (ii; 

p=1 . 

p=1 

c!,(3) = F 5 tp(5) c,, 

p=1 

T,(~) = & ; Fp (5) 2 
p=1 

~_&3== 2@ 5 

p=1 (1.7) 

Q3) = 2p [9 5 sp (Cl c, + h 5 np (5) 21 
p=1 p=1 

d3) = 2P [Jq ; spvJcp+ h 5 np (5) 2-j 
p=1 p=1 

where 

np (5) -_ sin rpc (v sin rp $- ‘5) + yC cos rPcos rpc 

qp (5) = cos Tp5 r(l + 9 cos TP - yfp sin rpl + T,S cm Tfp sin Tp5 (1.8) 

sp (5) = rp cos Tp sin Yp5, rp (c) = vyp (sin rp cos rpC - 5 cos rp sin rp5) 

t, (5) = vyp2 [sin T,5 (‘T - sin Tp ) - 5 cos rp cos rp5 1 

In formulas (1.6) to (l.?), C,(C, ?I) are found from the evations 

a~+Yt?F&?-~c,=, (p = 1, 2,. . .) (I-9) 

where 2y, are the roots of the function (sin Z)/X - 1. 

me sumnation in (1.6) to ( 1.7) extends over those roots yP that have 

positive real parts. Formulas (1.3) and (1.6) show that the displacements 
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u and v in the rotational case will be the components of the rotor 

[curl] of some function, and in the potential case they are those of 
the gradient of some function. 

The formulated problem on the state of stress in the plate could be 

solved, if those boundary values of v, Bk and C, necessary for a com- 

plete derivation are determined by the prescribed stresses on r2. ‘Ihis 

will be done below with the aid of Lagrange’s principle of virtual dis- 

placements. As a preliminary, we will discuss the degree of arbitrari- 
ness in the determination of y, B, and C,. Let us assume that all 
stresses in the plate are zero. By virtue of the independence of the 

state of stress, the biharmonic, the rotational and the potential states 

of stress must vanish separately. If the biharmonic state of stress 

vanishes, then, from (1.2), we have 

2v~+(Y-1)a$=o, (v-1)~+2v$!+o, p&=0 (1.10) 
5 

For values of v that are physically possible, it follows from (1.10) 

that all second derivatives of u, vanish, and consequently it has the 

form w = klc + k,q + k,. It is easy to see that 

this simply corresponds to a motion of the plate Y 

as a rigid body. In order to henceforth exclude d2 

this motion, we will assume that 
s G 

(1.11) 

az4(” 
Q 

w(i) = 0 d’- = 0 
&,W 
yj?- 

t-c. 

=O when E=q=<=O o 0, 
b 0 

r = 

h analogous treatment shows that Bk and C Fig. 2. 

vanish, if the corresponding stresses vanish. 
P 

Thus, there is no arbitrariness at all in the determination of B, and Cp. 

2. For the following, certain formulas will be needed which charac- 

terize the behavior of the solutions of equations (1.5) and (1.9) for 

small values of h. Both of these equations can be written out in the 

following form: 

‘Ihe Dirichlet problem for equation (2.1) will be treated. For the 

derivation of the relations that characterize this problem for small 

values of h, we pass over to the local system of dimensionless coordi- 

nates s and n (Fig. 2). 

In this connection, equation (2.1) assumes the form 
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(2.2) 

where R is the radius of curvature of contour r of the boundary rl 

(Fig. 1). 

In order to obtain the asymptotic representation of the solution to 

(2.2) as h - 0, we will apply a method that was described in [71. For 

this, we will carry out a stretching along the normals by setting n=At. 

In this connection, equation (2.2) assumes the form 

-aa2@ = 0 (2.3) 

We will look for the solution of (2.3) in the form 

CD (s, t) = X (s, t) exp at (2.4) 

If (2.4) is substituted into (2.3), for x(s, t) we obtain 

2 + i&j h;T& -t. $(2" + R*J+ $ (;ya;;;S +x& -0 (2.5) 

Further, we will assume that x(s, t) can be given by the series 

X (s, t) = X0 (ST 0 + AX1 (s, t) + h2X2 (s, t) + * - - (2-W 

From (2.5), we obtain for xk(s, t) the recurrence relations 

Xort + 2aXot = 0, 
aaX 

x,tt + BaX,t = - -jj--+x,I 

a 
x2tt + 2aX2f = - X0,, - R ( +x0, +x,t - a+xot + UXI) 

-+(X,I--+%+ 
(2.7) aR,’ 

x,tt + 2’;Ix,t = - &s+- - XlSS + 2t -g x0,, 

+ t2 $xor + ax, - at --g x, 

From (2.7), it is found that 

+ at2 $ x0) 

x0 = x0 (4, x, =-iig, x, = & (+g x,22 - x,“t - & x,t) 
(2 8) 

x3 = &{-5~xot~+ q&x;- %X0' + $(2H" -RR” + ;a2)],-’ 

+ ;;[-% X," + $F X0'-&X0 (2R'- RR” + a2)]} 

where x,(s) is some, as yet arbitrary, sufficiently smooth function 
which is determined from the boundary conditions when t = 0. Let 

WS, t)l,=q(s). In this case, (2.4), (2.6) and (2.8) yield x0(s) =9(s). 
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nus, for @(s, n) we obtain the asymptotic representation 

Solution (2.9) has the property that @ - 0 as the point moves into 

the region (n - - a). In the following, it will be necessary to have the 

expressions for the derivatives along the normal to the contour. From 

(2.9) it follows that 

+[- &-T” + 2~‘p~-a 2R’2 - RR” + aa 

WR3 Tp+...} @IO) 

We will assume that on the boundary q(s) can be represented in the 

form of the series 

f# (4 = To (4 + Q, (4 + a202 (8) + . . . (2.11) 

aa 3& =+-{~rpo+q~~l-$po)+h2[ucp2-&~l-- 
( aa - - 8clR” 9’ - ?&)I+ a3 [cup2-&q12- (2.12) 

- 

q, =+i{~%o++%h - 7 cPo)+ha[u2~2 - 3d- 

+ (& ‘PO - cpoq] + 
+ a3 [““ps - -$cPa + (&acpl-cpl~) + (&To”+ -&jr To)] + . ..} 

(2.13) 

3. We will now make more precise assumptions concerning the external 

loading and the contour r. We will assume that the system of tractions 

Mz, s), T(z, s) and Z(z, s), (Fig. 3) is prescribed at every point of 

r2. We will write out the conditions that the moments of these forces 

about the n- and y-axes should vanish. We have 

h 

$1 [- Tz cos nx - Nz sin nx + Zyl dz a3 = 0 
1‘ -I1 
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II 

$S [-_Tzsillns+Nzcosns-Zsl dzds=O 
(3.1). 

r -h 

From (3.1), it is clear that the order of 2 in A = h/a must be one 

unit higher than that of T and N. 

We introduce the following statical characteristics of the external 

loading: 

h h h 

s Nz dz = h2M, (s), 
s 

Nz3 dz = h’M, (s), \ Tz dz = h2G, (s) 
-h -h -Ih 

h 

\ T2 dz=h’G, (s), (3.2) 
zh 

3 T ‘+f-$dc = T, (s) 
--I 

h h 1 

s 
Zdz = hQ,, (s), 2z2 dz = h3Q2 (s), 

s 
N F d6 = N, (s) 

-h -1 

1 1 1 

s Nnt (5) d5 = Nt (~1, s Tnt (5) d5 = Tt (s), 
s zqt (5) dS = W) 

-1 -1 -1 

We will assume that all these statical characteristics can be repre- 

sented in the form of power series in A. In addition, it is evident that 

the expansion of M, will be of the form 

M, (s) = AM,, (s) + a2M,2 (s) + h3M,, (s) + . . . (3.3) 

It is obvious that M,, G,, G,, N,, Tn, N, and T, will have expansions 

of exactly the same type. The expansions of QO, Q, and Z, will cornnence 

with terms of the second order. We will further assume that all of these 

functions have a sufficient number of derivatives with respect to s. 

We will also assume that the contour r bounds a simply-connected 

region R, is sufficiently smooth, and let the radius of curvature R of 

contour r as function of s have a sufficient number of derivatives. 

4. We will determine the boundary conditions for +I, B, and Cp by 

making use of the fact that the stresses are known on the boundary of 

the plate. We will start from Lagrange’s principle of virtual displace- 

ments, which in the present case can be written down in the form 

6 \$s Wdx dy dz - s,s (N&J, + T&I, + 2%~) da = 0 (4.1) 



1628 O.K. Aksentian and 1. I. Vorovlch 

where un and us are the components of the displacements along the n- 

and s-axes. 

We will seek the deformed state of the plate in the form 

u = u’l) _i_ UC?) + rJ3) 

2j = 80) _j- $?) + j$N 

w = @I + @I + u,(3) (4.2) 

taking for the generalized displace- 

ments the values of the functions y, 

‘k and C and the value of the normal 

derivatiPve of function v on r. We will 

substitute (4.2) into (4.1) and take 

accollnt of the fact that the displace- 
Fig. 3. ments (4.2) must be exact solutions of 

the equations of the theory of elasti- 

city. As is well known [81, the volume integral on the left-hand side 

of (4.1) can in this case be converted into a surface integral 

ss (a, 6un 4 ins 6% + Gu 6w) do = \\ (X&L, + T&L, + Z6w) da (4.3) 

rr i.: 

where an, T~~, TV=, un and us are defined by the formulas 

tJn = (DA(l) -+ u,(2) -I- u,(3)) 1” + (rJy(l) + u,,(2) $- ou(3)) m2 -+ 

-+- 2 (tTV’l) + tXyt2) + 2,?,c3)) lm 

t ns = ( Txv”; + TX,,@)+ t,l,cTg)) ( l2 - m”) + (a,(1) + a,,(“! + 
-1.. cp - (T x (1 b _ &I”,_ (J,(W) ll,L (4.4) 

z nz = (z&l) + 2,,(Z) + Z,,(“‘) I + ($‘I) -+- t,,‘S) + Q)) m 

u, = (u(~) + ~12) + ~(3)) 1 + (u(l) + u(2) + d3)) m 

us = - (0 + ~(21 + u(3)) m + (u(l) + d2) $- $3)) 1 
(4.5) 

All stresses on the right-hand side of (4.4) should be taken from 

(1.2), (1.4) and (1.7)‘ and in (4.5) the displacements should be taken 

from (l.l), (1.3) and (1.6). In this connection, we obtain 
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p=1 p=1 

p=1 

p=1 

H=i +n _- 

(4.7) 

w= -(v +1)a~-((V--)ff~a~Arlr+2vh2aA~-a 5 qp(5)Cp 
p=1 

‘Ihe values of the functions BL(s, n) and Cp(s, n) on r will be de- 

noted by b&s) and c (s), respectively. In equation (4.3), we will only 
vary the boundary va ue of y, by taking 6b, = 6c = 0. In this case we P 

obtain 
P 

- & (v + 5) h3G38 % - (Y + 1) Q,$$ + h2 (+ Qs; + 2vQ,) aA$} (4.8) 

where 
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+(1-~)(~+~)h~~(~sin~~~+2)(c~--$~)- 

P=l 

(4.10) 

(4.11) 

k=O 
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F= 

If some of the terms in relation (4.8) are integrated by parts, it 

can be given the following form: 

+ [ha (q Qz+2YQO)+;(v+$)h3$] 6Aq} (4.15) 

We assume that v/l- and $@I~,- are independent in the variational 

equation (4.15). Si nce y is a harmonic function, Ayr and aA@n on r 

can be expressed in terms of q~ll- and $/&zly. In concrete terms, this 

expression can be established in the following way: it is known that 

every biharmonic function can be determined from its values and the 

values of the normal derivative on the boundary curve by means of the 

formula 

W)=$W’v QMQVQ+$K,(Pv Q)&Q)dQ (4.16) 
r r 

where K, and K, can be expressed in terms of Green’s function G(P, Q) 
of the first boundary-value problem for the biharmonic equation. From 

(4.16) it follows that 

WIr = $L (s, 0) $ (0, 0) da + $K,, (s, a) @'aS; ') In_ da (4.17) 
r I' 

Moreover, the functions Kij can be expressed in terms of the deriva- 

tives of G(P, Q), and they contain the delta-function of s, u and its 

derivatives. However, for our reasoning in the following this will not 

be of importance. From (4.17) and (4.18), it is possible to express the 

variations E$ll- and E[aAy,/&l l- in terms of eyll- and SD+,/anI l-. 
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In addition, formula (4.15) assumes the form 

2p $ IA (s) 6 “;; n, In_ + [E (4 - 91 Sq (s, 0)) ds + 

+ 2p $;p (4 K,, (s, 4 + [J’ (s) - ‘q-j K,,(s, 4) W (0, 0) ds do + 

+ 24x$3 (4 K,, (s, 0) + [f’ (s) - ‘q]Kn (s, .)}a w (a n) 
a; I_ds do= 

r1 

= 
$1 

(Y + 1) hM1 (s) 6 ‘q j 
Tl=O 

- (Y + 1) [Q,, (s) + A--@ (s, O)}ds + 
r 

+ $$ {- + (v + +-) h3Ma (s) Kzl (s, a) + [+ h2Qz (4 + 2y3LaQo (4 + 
I-r 

3(v++)~3E!$ 
] KI, 6, 0)) W (6, 0) ds da + 

+ $$I{- +(v+ $)~3M3(~)K33(~,4 + [+ h2Q2(4+ 2yh2Q,(4 t 
rr 

+ f (Y + $) h3 %$] K12 (s, a)} 8 ‘li, k n, In_ ds da (4.19) 

If now the order of integration in the double integrals is reversed, 

and the coefficients of both S[h(s, n)/an] “=a and of @(a, 0) on the 

right- and left-hand sides of (4.19) are equated, we obtain the .follow- 

ing two functional equations for the determination of the boundary 

values of y, a,,/&, B, and Cp: 

A (s) + $B (a) K,, (a, s) da + + [F (a) -a+] K,, (a, s) da = (4.20; 

-$(v + 1) hM,(~)-~(~+~)h”~1W,(a)li,,(s, s)da+ 

++$K12(a, s){h2[F Q2(o) +2vQo (s)f-++(v +#L~ %$)do 
r 

E(s) - %$ + c$ B (a) K,, (a, s) da + $ [I; (u) - qL] K,, (a, s) da = 
r 

= - T [Q,, (1) + h ‘y] - & (v + -+) h3 + M3 (a) Kzl (a, s) da t 

+ + $ Kll (a, s) (ha [+ Qa (a) + 2vQ,, (a)] + ; (v + +) h3 y} da 
r 

(4.21 j 

5. We will now assume that the variation of all quantities in equa- 

tion (4.3) can be achieved only at the expense of a variation of the 
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boundary value B I. We note that the term S[%J&/,- occurring in the 
variational equation is expressed in terms of 6b, by means of relation 
(2.10). Finally, we have 

-+(v+fi”“fm;” h2 (a~-+q)]}n=o+ 

u acp )I I 
-Rx _*=F { 

h %+[Gm-$-e(&+-&)+...]T,j 

(m=0,1.2 ,.*. ). 

If it is similarly agreed that 6ci in equation (4.3) is non-zero, we 
obtain the following functional equation: 

. 
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h3 x 
rl=” 

+ A2 (1 - v* - 8v2 

-+-vh h3 v+2-+wd~t 
-I ( 

-t A&2 (1 + -g- v co? rt ) z - [ T* - ;J -%(& t$) +. . .] x 

x [(v -1 ) y12 C( + A2( v + 2 - + v co? yt )g$]},=, = 

h2 =qi -f 
h 2 + Z[ - [rt - g -c (-& + &) + . . .]N,} (t = 1,2,3, . ..) 

(5.2) 

Thus, by taking m = 0, 1, 2, . . . . t = 1, 2, 3, . . . in equations (5.1) 

to (5.2), we obtain in addition two denumerable systems of functional 

equations, which, instead of (4.20) and (4.21), form a system of 2aot 2 

equations with exactly the same number of unknowns, namely ~lt-, W&l,; 
b, and cP. 

6. We will now return to the problem of determining the boundary 
values of q~', a,/&, R, and CP. We will seek y, 6, and cP in the form of 

the following series: 

$ (S, n) = I$@ (s, n) + A$, (% n) + 2 $2 (s, n) + . * . 

hi (s) = ho (s) + Ah, (S) + A2 h2 (S) + . . . 

cp (s) == cpo (s) + hCp1 (s) + h2 cp2 (s) i- . . . 

(6.1) 
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Ihen, according to formulas (2.13) to (2.14) we have 

~~~=~{7pc~+h(7,c~~-~e,,)+h.[bc~~-~CpL- 

1 
aa 

- 8Qa ‘~0 + 2r, +] + +,, - -2+‘,% - (85% + $) + 

+(-2~c;+-&c~--L2R’*-$~+a’cp-J]+...} (6.2) 

P 

SC* 

-I { iW r = + 7pa%a + k (7&,1 - y cm) + 

+ A2 [rp2cpa - Tgc,l + (& $0 - cp/)] + 

+ h3 pcp3 - .y cp2 + ($ CPI - %I:) + ii;+ c 
mn + 8r,R” 

-LpO)l+...} 

a$I, = -+Qo$ ?+A, - & bm) + q%bk2 - &bkl - 

- 
( ~b~~+~)]+I’[axbn-~bn-(~bn+~)+ 

k 

+ (- $ bk;) + 2sb;o - a 2R’a;3;;; +” bk,,)] + . . .} (6.3) 

SB, 1 

-I { ana r = h2 
&“bkc, + h +,‘bkl - 7 ( bko) + 

If now (6.1) to (6.3) and the expansions in form (3.3) are substituted 

into system (4.20), (4.21), (5.1) and (5.2), and terms of the same order 

in A are grouped together, then the system can be written out in the 

following form: 

P,h + P,1’ + P&3 + . . . = 0, R,L + R2Xa + R,ha + . . . = 0 
Sml~+SSmaK+S*Xs+...=O (m=0,1,2 ,...) (6.4) 

TtJ + Ttzh’ + TidS + . . . = 0 (t = 1, 2, . . .) 

I+ equating to zero the coefficients of like powers of h on the left- 

hand sides of (6.4), we obtain a system of recurrence relations from 

which one can successively find all the yi, b,i and cti. In the first 
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approximation we have 

Vorov ich 

P, = 2 (Y” - 1) 2 ____ x $0 - 4v (v 

p=1 
TP 

R, = 2 (v’ - 1) 

w sin2rP 
X-p-- 

$ p=x rp 1‘ 
sinzrp ,, 
rp CPO - 4v (v - 

S ml (6.7) 

Ttl = - 4v ; 
Tr,2rt2 (cos2rt - cos2 r,) 

(rt2-- r,")Wt- Tp) 
I(v - 1) (TP2 + 7t2) + (6.8) 

P=l(P#t) 

-1) x (6.5) 

CPO (4 K,, (0, 4 &J = 0 

1) x (6.6) 

CPO (4 K,, GJ, 4 do = 0 

+2 (v + l)Yp711cp0 + 2v2 yt3 (+ cm2 yt - 1) Cto = 0 (t = 1, 2, . . . ) 

A more detailed investigation of system (6.8) shows that it has only 

the zero solution ct,, E 0, if there is interest in solutions that lead 

to physically meaningful states of stress and strain. Then, from (6.7) 

we obtain: bm, s 0. In this connection, equations (6.5) and (6.6) will 

have been satisfied. 

E3y equating the coefficients of A2, we obtain the following relations: 

p 
2 

= 2(v+l) 
3 [ 

2x73 + (Y - i,(f + +g)]_o + 

* sin2 rp 
- 4v(v - 1) 2 - 

# 
c&,1 (3) K,, (0, S) da - y AT,,= 0 (6.9) 

p=1 Tp r 

R, = -+ + l)[ 2v*+ (Y $- 1,(~++p!$- +a$)jnso + 

m sin2 y “, sin2 TD 
+ 2 (v” - 1) 21] --$ c,; - 4v (v - 1) > - 

$ 
cp,1 (0) k’,, (o, a) ds + 

p=1 I’=1 Tp I‘ 

+ 3qQo2 +3 =o (6.10) 



The state of stress in a thin plate 1637 

S 
2 (- I)m+l (v +I) 

( 

rYg, = wo 
m2 = 

-_-- 

%I 
h3n R a8 n=o- ) ~mhn~- 

_2(-q"+' O" co.9 r* 

%l 2&_&z {(v--)~ps+ 

+(I -v$+$)(~~ + ~,,,r,,}c~; -+,,~ =0 (m=0,1,2,...) (6.11) 
m 

TtB - rp;;(~;;,:;, “5 :‘I ,&, ; 
m--l)(TPa+7t2) + 2 (~+lh$rtl cp1+ 

P=l(Pft) t P 1-p 

+cl+2Y%3($ co32 7t - l)Cll = 0 (t=1,2,3,...) (6.12) 

From system (6.12) we again find that ctl E 0. From (6.91, (6.101, 
we obtain the boundary conditions for the determination of ylO, which, 
as is easily seen, is identical with the boundary conditions in the 
technical theory of the bending of plates based on Kirchhoff's hypo- 
thesis. System (6.11) allows the determination of b,,. E+j equationg co- 
efficients of A3, we obtain 

+qv+q;~bk;+2(vs-1) ~~+,- 
k=o P=l 

_ 4v (V - 1) ; '%$ cm (a) ~~~ (a, s)do -+I& = 0 (6.13) 
p=1 r 

R3 = -+(v + I)[~v~+(-$$+~~-~~~)]~- (6.14) 

-4(V++$+~b~I+~b~;)+2(V2-i)~~Cp;- 

h=o p=1 

O" sinaT, 
- 4v(v -1) 2 - 

9 
p=1 rp r 

Cpr (a) K,, (a, s) c&J + T (Qos + 9) = 0 

s*=2(y;3m+1 pa~+(v-l)(+~~+g$)+ 

+ [ _ ambms + G b,, ] _ 2 ‘-6;m+1 ; co” ‘p 
p=l rp*- 0,’ 

x 

x (v- 
{ 
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From system (6.16) we determine ct2, which, in general, are non- zero. 
l’hen, from (6.13) and (6.14), we find the boundary conditions for yI, 

and from system (6.15) we determine b,,. l’his process can be continued 

as far as desired, when I- and the loading is sufficiently smooth. 

As can easily be seen, at each stage of the construction of the 

asymptotic expansions it is necessary to solve exactly the same bi- 

harmonic problem for region 9 as that arising in the technical bending 

theory for plates based on Kirchhoff’s hypothesis. In addition, it is 

also necessary to solve a certain infinite system of algebraic equations, 

i.e. to invert a certain infinite matrix. It should be particularly 

emphasized that the coefficients of this system are quite well-defined 

numbers which are independent both of the external loading and of the 

boundary curve r of the plate. The matrix of this system can be inverted 

once and for ever. As a subsidiary study shows, the inversion of this 

matrix for physically meaningful classes of solutions is quite possible 

and could be realized practically by means of the method of reduction. 

It can also be proved that the biharmonic problem encountered at each 

stage of the construction of the approximation is solvable. 

7. In the assumptions made about the external loading, which were 

mentioned in Section 3, the coefficients Hk, which characterize the 

rotational state of stress, have an order of smallness in ?I one unit 

larger than the biharmonic solution, and the coefficients CP, which 

characterize the potential state of stress, have an order of smallness 

in h two units larger than the biharmonic solution. Therefore, expan- 

sions (6.1) actually have the forms 

By making use of formulas (2.9)) for Bk and CP we obtain the 
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asymptotic expansions 

S,(s, n) ={a (1 - ; 3a2 n7---/- n2-- . . . 8R” )bk, (s) +h2 [(I - n.&+rPi$-. . .) X 

x bk2 (~1 + + (- aa a2 nm-np+... )bkl(s+. . .}expy 

aBk 

{ ( 

3a2 
-= 0. l- & h n&+nem- . . . )bk,(s) + A[(-&+ n3sz- . ..)b.&) + 

+ok(i - n&-t 
3aa 

n2 g-p - . . . bk2 (4 + ) 

+f(-n$- a2 na+... ) bkl(S)]+ . . .}=F’T (7.3) 

3213, 
yj$-= { ( 

+Oka i-ni&+na$$-... 
) bkl (s) + 

+[20k(-&+n$$-...)bkl(s)+oka(i-nn+nd&-...)bk,(s)+ 

+J+&- a2 n-j-p+... )bkl(s)]+. . .}expy 

C, (s, n) = {A2 (1 - n &-+ n2$ - . . .) cp&) +A3 
N 

1 - n i& + 73 g - . . . x 
1 

x CPS (4 + 2+ 
( 

a a 
a2 

P 
-Qjrn&- 

. ..) CP2 q+.. .}expy 

EL hy, 
an 1 ( 

i-n&+79$-... ) c,,(s)+ha[(-&+n4%-...)X 

X cp2 (s) + rp 
( 

1 - n Q + n2 it!!! - . 
2R ) 

cp3 (s) + 

++-(- nu<- n$+...)cz;sl];‘...,c?xpT (7.4) 

=P - 
LiJns { ( 

$ i-n&+“tE--... 
8R1 ) cp2 (s) + 

-l-h 2Tp 
[ ( 

-&-+“$$-...)Cpp(s)+$ (i-n&+G8$-... c,,(s)+ 
) 

+ $(-n&-n~~d+...)c,(s)]+...}exp~ 

If’ (7.1)) (7.3) and (7.4) are substituted into formulas (4.6) and 

(4.7), we obtain 

U,=*I. 
[1 

2V9$+ (V-l) ($~+&+~+...&n ‘G$C)]<+ 

+ 2Pk [(V - 1) 5 sp (5) (1 - n2+ $ 
3a2 

na m - - . . ) cp2 (4 + 
p=1 

+ gnp(6)TP2(f -n&+nz8g-...) c,(s)]expJ$+ 

p=1 
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p=1 

z = 2$4. i r,,(c) Tp (I - 2i 
3a? 

r&L n-+-n3 ~--... 
8R3 

cl’2 (s) exp J$ -;- 

7i=1 

+ 2ph2 
1 

v (1 - 6’) qg+ 2 cosUkc 
I( 

1 --na+ n2.3x- 
2R 8RZ . . . ) 1 

bkl b- 
8 

exp ‘g $ 

k=O 

+ f?j r,(6) [+rr,[l - n2&-+ nz8$--. . .)c1,3(s) + -+(- n,&-- 
P==l 

-nE+... 
as2 cp2 Cs) + (- 2+ + n $$- - . . . 

) I 
cpa (s) exp Jff-} + . . . (7.7) 
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np (5) T* 1 - m ( n 25 + n2 3aa - , . . 
ma ) cp2 (s) exp J$!.] + . . . (7.8) 

p=1 

ug = h (v + 1) acH-’ 2 + ha 
1 

(v -f 1) a~H-*~ - 

- 2a g sin a,c 
( 

1 3aa - n -?- b na - - . . . 
2R 8x2 ) 

bkl (s) exp F 
I. 1 

+ . . . 
k=o 

w= - (v f 1) aqO - A (v 9 1) aql + A2 
[ 

- (v 9 1) a% - (v - 1) p aA*, + 

!- 2vaA$, - a 1-n&+ nz8&$-. . . ) cpz (s) exp 71 + . . . 

The first terms on the right-hand sides of formulas (7.8) correspond 
to the solution in the technical bending theory of plates. Hence it 
follows that the error in the determination of the displacements accord- 

ing to Kirchhoff’s hypothesis will be of order A compared with unity 
over the whole closed region occupied by the plate. This result is in 
agreement with the well-known results obtained on the basis of pualita- 

tive investigations [9,101. 

The state of affairs with the stresses is rather more complicated. 
If the behavior of the stresses in the closed cylindrical sub-region 
Q’x2h (Fig. 4) is considered, then in the determination of the stresees 
here according to Kirchhoff’s hypothesis there will be an error of order 
A compared to unity.* However, this result is valid namely for all sub- 
regions R’ x 2h lying wholly within R x 2h. In fact, on the boundary R, 
where n = 0. we will have 

)I n=o+ 

Fig. 4. 

l In the calculation of the degree of error, no account has been taken. 
of course, of terms which have exponential order of decay relative to 
A, i.e. of terms containing exp (T&h and exp ypn/h. 



1642 O.K. Aksentian and 1.1. Vorouich 

+ B I@ - 1) sp (5) Q TpZnp (01 cp3 (4 - -g 2 -rp’lp (5) cp2 (4 + . . . I (7.9) 
P==l p=1 

T = 2ph (v -+ 1) 5 ‘Lj!$_ - -__. __ 
t 

il a+, 
lls s 1s as )- 2p1i E 5k sin Ok@k, (4 + 

k=o 

+ 5 sino,<[+ *kl ts) - a,b,, ls) 
k=o 1 + i np (t) Tpcp; b,} + . . . (7.10) 

p=1 

co 

T nz = 21”k 2 rp (0 TPcp2 (4 -t 2G2 

p=1 i 
v (I- ~2) $J+ n=O + 

+ ; cos a,cb,; (s) +- i T’p (5) TpCp3 (s) - & cp2 (s) II + . . . (7.11) 
k-0 r,=:, 

The first terms on the right-hand sides of (7.9) and (7. lo) corre- 

spond to the solution of the technical bencing theory for plates. The 

remaining terms will be supplementary to the solution of the Kirchhoff 

theory. The formulas show that among them there are terms of the same 

order in A as in the solution for the technical bending theory. In other 

words, the error in the application of Kirchhoff’s hypothesis will have 

zero order in h relative to unity as h - 0. If expression (7.11) for 
1 is considered, then as h - 0 the corrections to the terms given by 
tii Kirchhoff hypothesis begin to play an important part, and here the 
error in the Kirchhoff hypothesis turns out to be arbitrarily large. 

These conclusions, in our opinion, are of great importance. They 

show, for example, that it is necessary to exercise caution in estimat- 

ing the state of stress near the boundary of the plate on the basis of 

Kirchhoff’s hypothesis. The last feature is of great practical importance 

because during the bending of plates the greatest stresses usually occur 

at the boundary of cutouts and from these stresses one can calculate the 

stress-concentration factor. The method developed here makes it possible 

to study the question of the accuracy of the Kirchhoff theory in the 

calculation of stress concentrations. 

Further, let us note the following fact: we will assume that on each 

section s = const we have a statically self-equilibrating loading. In 

this case, as can be easily seen, v,, = 0, and ~1 is non-zero in general. 
This indicates that in the present case, in spite of the fact that the 

loading on each section is self-equilibrating, there will be a state of 

stress penetrating without decay into the depth of the plate. However, 

it will be of a higher order. The stress concentration in this case, it 
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Is clear, cannot be found from the technical bending theory for plates. 
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